Numerical reckoning fixed points via new faster iteration process

نویسندگان

چکیده

In this paper, we propose a new iteration process which is faster than the leading S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79], Thakur et al. [App. Math. Comp. 275 (2016), 147-155] and M [Filomat 32, (2018), 187-196] iterations for numerical reckoning fixed points. Using process, some point convergence results generalized α-nonexpansive mappings in setting of uniformly convex Banach spaces are proved. At end offer example to compare rate proposed with processes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New iteration process for approximating fixed points in Banach spaces

‎The object of this paper is to present a new iteration process‎. ‎We will show that our process is faster than the known recent iterative schemes‎. ‎We discuss stability results of our iteration and prove some results in the context of uniformly convex Banach space for Suzuki generalized nonexpansive mappings‎. ‎We also present a numerical example for proving the rate of convergence of our res...

متن کامل

Numerical Reckoning Fixed Points in $CAT(0)$ Spaces

In this paper, first we use an example to show the efficiency of $M$ iteration process introduced by Ullah and Arshad [4] for approximating fixed points of Suzuki generalized nonexpansive mappings. Then by using $M$ iteration process, we prove some strong and $Delta -$convergence theorems for Suzuki generalized nonexpansive mappings in the setting of $CAT(0)$ Spaces. Our results are the extensi...

متن کامل

common fixed points of two nonexpansive mappings by a new one-step iteration process

we introduce a new one-step iteration process to approximate common fixed points of twononexpansive mappings in banach spaces and prove weak convergence of the iterative sequence using (i)opial’s condition and (ii) kadec-klee property. strong convergence theorems are also established in banachspaces and uniformly convex banach spaces under the so-called condition ( a ), which is weaker thancom...

متن کامل

Proximal Point Algorithms for Numerical Reckoning Fixed Points of Hybrid-type Multivalued Mappings in Hilbert Spaces

In this paper, we propose a new iteration process to approximate minimizers of proper convex and lower semi-continuous functions and fixed points of λ-hybrid multivalued mappings in Hilbert spaces. We also provide an example to illustrate the convergence behavior of the proposed iteration process and numerically compare the convergence of the proposed iteration scheme with the existing schemes.

متن کامل

New three-step iteration process and fixed point approximation in Banach spaces

‎In this paper we propose a new iteration process‎, ‎called the $K^{ast }$ iteration process‎, ‎for approximation of fixed‎ ‎points‎. ‎We show that our iteration process is faster than the existing well-known iteration processes using numerical examples‎. ‎Stability of the $K^{ast‎}‎$ iteration process is also discussed‎. ‎Finally we prove some weak and strong convergence theorems for Suzuki ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied general topology

سال: 2022

ISSN: ['1576-9402', '1989-4147']

DOI: https://doi.org/10.4995/agt.2022.11902